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Abstract: We study the question of a modification of the running gauge coupling of Yang-

Mills theories due to quantum gravitational effects in a compact large extra dimensional

brane world scenario with a low energy quantum gravity scale. The ADD scenario is applied

for a D = d + δ dimensional space-time in which gravitons freely propagate, whereas the

non-abelian gauge fields are confined to a d-dimensional brane. The extra dimensions

are taken to be toroidal and the transverse fluctuation modes (branons) of the brane

are taken into account. On this basis we have calculated the one-loop corrections due

to virtual Kaluza-Klein graviton and branon modes for the gluon two- and three-point

functions in an effective field theory treatment. Applying momentum cut-off regularization

we find that for a d = 4 brane the leading gravitational divergencies cancel irrespective of

the number of extra dimensions δ, generalizing previous results in the absence of extra-

dimensions. Hence, again the Yang-Mills β-function receives no gravitational corrections

at one-loop. This is no longer true in a ‘universal’ extra dimensional scenario with a

d > 4 dimensional brane. Moreover, the subleading power-law gravitational divergencies

induce higher-dimensional counterterms, which we establish in our scheme. Interestingly,

for d = 4 these gravitationally induced counterterms are of the form recently considered in

non-abelian Lee-Wick extensions of the standard model — now with a possible mass scale

in the TeV range due to the presence of large extra dimensions.
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1. Introduction

Large extra dimensions with a low energy scale for quantum gravity [1] represent a much

discussed resolution of the hierarchy problem between the Planck scale MPlanck ∼ 1019GeV

and the electroweak scale Mweak ∼ 1TeV of the standard model of particle physics.1 Present

experimental constraints allow for δ ≥ 2 extra dimensions of up to submillimeter size if

one insists on a fundamental gravitational scale of a few TeV being just in the range of

the upcoming LHC collider at CERN [3]. In this scenario the standard model fields (or

their supersymmetric extensions) are confined to a 4 dimensional brane within a D = 4+ δ

dimensional space-time manifold with compact extra dimensions in which the gravitons

freely propagate. Extra dimensions arise in superstring theories and such braneworld sce-

narios can be embedded within string theory [4]. However, they may also be studied within

quantum field theory upon treating gravity as an effective field theory. As the inclusion

of gravity to the standard model (or its supersymmetric extensions) destroys its renor-

malizability in four dimensions, one might just as well also consider the existence of extra

“universal” compact dimensions for the brane fields. This was proposed for the first time

in [5]. This universal extra dimensions scenario in the absence of gravity was considered

by the authors of [6] who showed that the presence of extra dimensions for the minimal

supersymmetric standard model (MSSM) fields leads (with a suitable cut-off procedure for

the Kaluza-Klein towers of states) to a power law running of the MSSM couplings and

grand unification at scales M ≪ 1016GeV well below the standard grand unified scale. A

1For a set of recent reviews see [2]
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natural question to be addressed in this work is then how the running of gauge couplings

is affected once one includes quantum gravitational effects in such a brane-world scenario.

Recently, the question of gravitational contributions to the running gauge couplings in

four dimensional Einstein-Yang-Mills theory has received considerable attention. This was

initiated by the work of Robinson and Wilczek [7] who reported a one-loop contribution to

the Yang-Mills β-function from virtual gravitons yielding a dominant power-law running

behaviour for any gauge theory at energies close to the Planck scale. However, this was

later on shown by Pietrykowski and Toms [8, 9] to be a gauge artefact of the background

field method employed in [7]. A reanalysis using background field techniques [8, 9] as well

as an unambigous diagramatic approach employing a momentum cut-off regularization to

be sensitive to non-logarithmic divergencies of the present authors [10] demonstrated the

absence of gravitational contributions to the Yang-Mills β-function in four dimensions.2 De-

spite this, the Einstein-Yang-Mills theory receveives counterterm corrections of dimension

six [12, 10] arising from the, by power counting subleading, logarithmic divergencies due to

virtual gravitons at one-loop. Interestingly, the induced non-abelian gluonic counterterm

is of Lee-Wick [13] form M−2
Planck tr[DµFµρDνF νρ], which has recently been independently

considered as a non-abelian Lee-Wick extension of the standard model in order to stabilize

the Higgs mass against qudratically divergent radiative corrections [14].3 However, while

being of conceptual interest this effect is tiny at TeV scales due to the largeness of the

Planck mass in the absence of extra dimensions.

Motivated by the large extra dimensional scenario of Arkani-Hamed, Dimopoulos and

Dvali (ADD) [1] we have extended our earlier four dimensional investigation [10] to the most

general scenario of a D = d + δ dimensional brane-world with a d dimensional Yang-Mills

brane theory embedded in a D dimensional manifold in which the graviton propagates. For

simplicity the extra dimensions are taken in the form of a δ-torus T δ with common radii R.

Viewed from the brane we have a tower of Kaluza-Klein graviton excitations contributing

in the considered one-loop effective theory. Following [16] we also take into account brane

fluctuations. Due to the invariance under general coordinate transformations, the theory

then contains Goldstone bosons (branons) which interact with the Kaluza-Klein states and

have to be included into the investigations. We perform a recalculation of the gluon two-

and three-point functions at one-loop in the extra dimensional setup and determine the

gravitational contributions to the Yang-Mills β-function from the leading divergencies of

the momentum cut-off regulated integrals. Interestingly it is shown that again the lead-

ing bulk gravitational corrections cancel for a d = 4 dimensional Yang-Mills brane theory.

Moreover we establish the necessary counterterms for the subleading divergencies, which

could be viewed as gravity induced Lee-Wick extensions of the theory. Here we point out

subtle ambiguities in the calculation of subleading power-like divergencies and offer a (uni-

versal) resolution of these ambiguities by invoking gauge invariance. In this framework

and for a D = 4 + δ dimensional brane-world the non-abelian counterterm remains of the

2This vanishing was shown to also occur in a string theoretical analysis for certain 4d N = 1 supersym-

metric compactifications using an infrared regulator [11].
3This phenomenon in the abelian case was also noted in [15].
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non-abelian Lee-Wick form M−2
(D) tr[DµFµρDνF

νρ], where M(D) is the low gravitational

scale of a few TeV. One is then naturally tempted to attribute the non-abelian Lee-Wick

extension considered by Grinstein O’Conell and Wise [14] with this brane-world quantum

gravity counterterm. However, this is to be taken with caution as higher-loop gravita-

tional corrections will introduce an infinite tower of higher-dimensional counterterms, thus

modifying the result of [14].

It should be noted that the results for the dimensionful coefficents of the higher deriva-

tive terms and the dimensionful gauge coupling on d 6= 4 dimensional branes and their

renormalization depend on the choice of the graviton gauge condition [16, 17]. Therefore

the obtained values for these cases are specific to the applied de Donder gauge. Neverthe-

less, all actual observables, like scattering amplitudes, should be independent of the chosen

gauge as shown in [17].

2. General formalism

2.1 Effective lagrangians for the Einstein-Yang-Mills theory and branes

Let us consider gravity in D-dimensional space-time M = R
1,d−1 × T δ, where T δ is a

δ-dimensional torus with a uniform radius R and dimM = D = d + δ. We decompose the

metric as

GMN = ηMN + κ(D)hMN (2.1)

around the flat D-dimensional Minkowski space-time with ηMN = diag(+,−, . . . ,−) in

terms of the graviton field hMN . Here κ2
(D) = 32π/MD−2

(D) is the gravitational coupling

constant in D-space-time dimension with M(D) being the corresponding low scale Planck

mass. This low scale Planck mass is related to the Planck mass observed on the brane

M(d) = MPlanck ∼ 1019GeV as

MD−2
(D) (2πR)δ = Md−2

Planck.

In the following upper (lower) case latin letters are used for D-dimensional (δ-dimensional

compactified) indices and Greek letters for d-dimensional indices. Let us further decompose

the D-dimensional coordinates as XM = (xµ, zi) and write the field hMN in matrix form

hMN =

(

ĥµν − 1
d−2φηµν

1√
2
Bi ν

1√
2
Bj µ φij

)

, (2.2)

where we have introduced the fields which appear in the d-dimensional effective theory,

i.e. the graviton ĥµν , graviphotons Bi µ and graviscalars φij and further have used φ =

ηijφij = −δijφij , µ = 0, 1, . . . , d − 1, i = d, . . . , δ.

Next, consider the bulk action of gravity

S =

∫

dDX

(

2

κ2
(D)

√
−GR− 1

α
FNFN + Lghosts

)

. (2.3)
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Here FN denotes the gauge fixing term

FN = ∂µ

(

hµN − 1

2
ηµNh

)

+ α∂i

(

hiN − 1

2α
ηiNh

)

with h = hM
M and α being the gauge parameter. In particular, we will consider here the

de Donder gauge α = 1 which is more suitable for our loop calculations than the unitary

gauge, α → ∞. The propagation of unphysical fields in the de Donder gauge does not

pose problems since we consider no processes with external gravitational fields and the

effective number of degrees of freedom is the same in all gauges. On the other hand in

de Donder gauge the propagators yield a better UV-behaviour than in unitary gauge. Note

that the gravitational Faddeev-Popov ghosts will play no role in the considered one-loop

calculations, so there is no need to specify Lghost.

Decomposing now the bulk action around the flat background and taking into account

only the quadratic part in the gravitational field leads to the quadratic bulk Lagrangian [18,

19]

L(D)
grav. =

1

2
∂AhMN

(

ηMRηNS − 1

2
ηMNηRS

)

∂AhRS , (2.4)

where ηMN is used to raise and lower indices. It is convenient to perform the Kaluza-Klein

reduction of this Lagrangian by decomposing the field hMN (x, z) which is compactified on

the δ-dimensional torus T δ into the mode expansion

hMN (x, z) = V
−1/2
δ

∑

~n∈Zδ

h
(~n)
MN (x)ei~n·~z

R , (2.5)

where Vδ = (2πR)δ is the volume of the compactified torus.

By integrating the Lagrangian (2.4) over the compactified extra coordinates, one ob-

tains the d-dimensional Lagrangian for Kaluza-Klein graviton states. The quadratic part

of this Lagrangian reads:

L(d)
grav. =

1

2

∑

~n

(

∂αĥ(~n)
µν

(

ηµρηνσ − 1

2
ηµνηρσ

)

∂αĥ(−~n)
ρσ −

− m2
~nĥ(~n)

µν

(

ηµρηνσ − 1

2
ηµνηρσ

)

ĥ(−~n)
ρσ −

− ∂αB
(~n)
i µ ∂αB

(−~n) µ
i +

+ m2
~nB

(~n)
i µ B

(−~n) µ
i +

+ ∂αφ
(~n)
ij

(

δikδjl +
1

d − 2
δijδkl

)

∂αφ
(−~n)
kl −

− m2
~nφ

(~n)
ij

(

δikδjl +
1

d − 2
δijδkl

)

φ
(−~n)
kl

)

,

(2.6)

where m2
~n = ~n·~n/R2 is the mass squared of the nth excited Kaluza-Klein graviton. From

this we can read off the Feynman rules for the propagators of the gravitational fields in

– 4 –
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de Donder gauge:

ĥ
(~n)
αβ ĥ

(~n′)
γδ :

iδ~n,−~n′
1
2

(

ηαγηβδ + ηαδηβγ − 2
d−2ηαβηγδ

)

p2 − m2
~n

B
(~n)
i µ B

(~n′)
j ν :

−iδ~n,−~n′δijηµν

p2 − m2
~n

φ
(~n)
ij φ

(~~n′)
kl :

iδ~n,−~n′
1
2

(

δikδjl + δilδjk − 2
D−2δijδkl

)

p2 − m2
~n

.

(2.7)

In contrast to the gravitons moving freely in the bulk, the matter fields (we focus here

only on gauge bosons) are confined to a d-dimensional space-time manifold (a (d−1)-brane).

In particular, we shall use the brane coordinates

Y N (xµ) = (yµ(x)=xµ,
1√
τ
ξi(x)),

where as discussed by Sundrum [20] the reparameterization invariance of the (d−1)-brane

allows to fix d of the coordinates and choose a static gauge yµ =xµ. The ξi are dynamical

branon fields representing the transversal fluctuations of the brane forming the Goldstone

scalars in d dimensions of the broken translation invariance in the δ extra dimensions. τ

is the brane tension introduced at this point to yield a canonical normalization for the

branons (see below).4

Let us next consider the induced metric on the brane

gµν(x) =
∂Y M

∂xµ

∂Y N

∂xν
GMN (Y (x))

= Gµν(x,
ξ(x)√

τ
) +

1√
τ

(

∂µξiGiν

(

x,
ξ(x)√

τ

)

+ ∂νξ
iGµi

(

x,
ξ(x)√

τ

))

+

+
1

τ

(

∂µξi∂νξjGij

(

x,
ξ(x)√

τ

))

= Gµν(x, 0)

+
1√
τ

(

ξi∂iGµν(x, 0) + ∂µξiGiν(x, 0) + ∂νξ
iGµi(x, 0)

)

+

+
1

τ

(

1

2
ξiξj∂i∂jGµν(x, 0) + ξi∂µξj∂iGjν(x, 0)+

+ ξi∂νξj∂iGµj(x, 0) + ∂µξi∂νξ
jGij(x, 0)

)

+ O(τ−3/2)

(2.8)

and again decompose it around the flat background

gµν = ηµν + κ h̃µν , (2.9)

4We discard here the interesting question of how such a brane can dynamically arise as a solution of the

underlying Einstein-Yang-Mills system or a more general supergravity theory related to string theory. It is

worth mentioning that the perturbation in the gravitational dynamics due to the brane tension is small in

the region of validity of the effective field theory, see appendix A.
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using now the d-dimensional gravitational constant κ = κ(d) = κ(D)/(2πR)δ/2. The metric

fluctuation h̃ has to be expressed in terms of the branon ξ and the D-dimensional graviton

hMN . By plugging equations (2.1) and (2.5) into (2.8) one obtains

h̃µν = − 1

κτ
δij∂µξi∂νξ

j+

+
∑

~n

(

ĥ(~n)
µν − 1

d − 2
ηµνφ(~n) +

1√
τ

(

i

R
niξ

iĥ(~n)
µν − i

R(d − 2)
ηµνniξ

iφ(~n)+

+
1√
2
∂µξiB

(~n)
i ν +

1√
2
∂νξ

iB
(~n)
i µ

))

+ . . .

(2.10)

where the colons refer to terms involving more than two fields.

2.2 Interaction with gauge bosons and branons

Let us now consider the brane Lagrangian [16]

Lbrane =
√
−g (−τ + LYM) ,

where LYM describes the covariant d-dimensional Yang-Mills Lagrangian of the

gauge bosons,

LYM = −1

2
gµρgνσ tr (FµνFρσ) ,

with Fµν = ∂µAν −∂νAµ − ig[Aµ, Aν ] the gauge field strength, Aµ = Aa
µT a the gauge field,

T a the Lie algebra generators of the gauge group and g the gauge boson coupling.5

For our purposes it is convenient to expand the first term in Lbrane up to quadratic

order in graviton and branon fields which yields

−τ
√
−g = −τ

(

1 +
κ

2

∑

~n

(

ĥ(~n) − d

d − 2
φ(~n)

)

+

+
κ2

8

∑

~n

∑

~m

(

ĥ(~n)ĥ(~m) − 2ĥ(~n) αβĥ
(~m)
αβ − 2ĥ(~n)φ(~m) +

d

d − 2
φ(~n)φ(~m)

))

+

+
1

2
δij∂

µξi∂µξj− (2.11)

−κ
√

τ

2

∑

~n

(

i

R
niξ

iĥ(~n) − id

R(d − 2)
niξ

iφ(~n) +
√

2B
(~n)
i µ ∂µξi

)

+ Linteraction .

Note that equation (2.11) contains terms linear in ĥ and φ, because the massive brane is

a source of gravity. These terms reflect the off-shell nature of the metric expansion, but

they can be neglected for the regime under consideration, see appendix A. Furthermore

we find a kinetic term for the massless branons, graviton-branon mixing terms as well as

5Since Fµν is antisymmetric the Christoffel connections arising from the space-time covariant derivatives

∇µ cancel against each other, hence the covariant derivatives can be replaced here by ordinary derivatives ∂µ.
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ĥ
(~n)
αβ

=−i
κ

2
Tαβ

φ
(~n)
ij

=−i
κ

2

1

d − 2
T µ

µ δij

B
(~n)
iα

= 0

ξi ξj

=−i
1

τ
Tµνδijk

µ
1 kν

2

ξi ĥ
(~n)
αβ

=
κ

2
√

τ
Tαβ

ni

R

ξi φ
(~n)
kl

=
κ

2
√

τ

1

d − 2
T µ

µ δkl
ni

R

ξi B
(~n)
jα

=− κ√
2τ

Tµαδj
i k

µ

Figure 1: Vertices of graviton-matter and branon-matter couplings; k1, k2, k are the incoming

momenta of the branons (gluons are drawn as example).

interaction terms. The corresponding Feynman rules are

ξi ξj :
iδij

p2
,

ĥ
(~n)
µν ξi :

κ
√

τ

2
ηµν

ni

R
,

B
(~n)
j µ ξi :

κ
√

τ√
2

δj
i pµ ,

and φ
(~n)
kl ξi :

κ
√

τ

2

d

d − 2
δkl

ni

R
,

(2.12)

where pµ is the incoming momentum of the graviphoton Bj µ and ni the i’th mode number

of the Kaluza-Klein field.

The interaction of gravitons and branons with the gauge bosons is contained in the

covariant dependence of LYM on the induced metric. The Feynman rules can now be

obtained by using equations (2.9) and (2.10).

The first order couplings of the branon and gravitational fields to brane fields are

mediated by

L(κ) = −κ

2
T µν h̃µν

and shown in figure 1. Here T µν is the energy-momentum tensor of the brane fields.

The higher order couplings of the Kalzua-Klein gravitons ĥ(~n) and graviscalars φ
(~n)
ij

to the brane fields are derived from the couplings of the well studied d dimensional gravi-

ton hµν which couples identically as the composed field h̃ in the higher dimensional case.

– 7 –
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From equation (2.10) one finds that the Kaluza-Klein gravtions ĥ can be substituted for

d dimensional h’s. For each d dimensional graviton hµν which is substituted by a gravis-

calar φ
(~n)
ij the corresponding vertex rule is obtained by multiplying the orginal formula by

δijη
µν/(d − 2). The explicit rules can be taken e.g. from [10].

3. Results

3.1 Gravitational contributions to the β-function

In this section we will calculate the leading divergencies of the gauge boson (gluon) prop-

agator arising from one-loop diagrams with exchange of virtual Kaluza-Klein gravitons

(ĥ(~n)– spin 2, B
(~n)
jµ – spin 1,φ(~n)– spin 0) and branons (ξi) (To be precise, note that the

spin-1 KK-graviton does not couple to gauge bosons). Although we are only interested

in pure gravitational one-loop contributions and will not consider any terms involving the

brane tension τ , we cannot ignore the branons completely due to the inverse τ depen-

dence in matter-branon interactions and graviton-branon mixing [16], see figure 1 and

equation (2.11). There exist two shapes of tadpole graphs involving branons at order κ2.

These were calculated using the general form of the interaction, figure 1, so the results are

applicable for generic brane matter fields. In particular, we get

+ = −κ2

4
Tµ

µ δ − 2

D − 2

∑

~n

∫

ddk

(2π)d
m2

~n

k2(k2 − m2
~n)

=
κ2

2
Tµ

µ δ

d

∑

~n

∫

ddk

(2π)d
1

k2 − m2
~n

(3.1)

for the parachute shaped graphs and

+ =
κ2

4
Tµ

µ δ − 2

D − 2

∑

~n

∫

ddk

(2π)d
m2

~n

k2(k2 − m2
~n)

= −κ2

2
Tµ

µ δ

d

∑

~n

∫

ddk

(2π)d
1

k2 − m2
~n

(3.2)

for the new moon shaped graphs. Here T µ
µ is the trace of the energy momentum tensor

and the sum runs over the Kaluza-Klein gravitons. Clearly, the formal expressions for the

momentum integrals in equations (3.1) and (3.2) are understood to be suitably regularized.

From the above expressions it directly follows that the sum of all branon tadpole graphs

vanishes independently of the size of the compactified dimensions. Most interestingly, to

lowest order in the brane tension, there appear no branon effects.

In the next step, let us consider the contribution of the Kaluza-Klein gravitons to

the gauge boson (gluon) polarization tensor. Neglecting for a moment possible higher

– 8 –
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order derivative terms of the form q2(q2ηµν − qµqν), we obtain for the leading propagator

divergence to order κ2:

+ = κ2δab(q2ηµν − qµqν)×

× 1

2d

(

8 − 5d +
(d − 4)2

D − 2

)

∑

~n

∫

ddk

(2π)d
1

k2 − m2
~n

. (3.3)

The last term in the bracket, ∼ 1/(D − 2) — coming form the combination of the last

term in the graviton propagator and the graviscalar — is the only one proportional to the

trace of the energy momentum tensor and thus vanishes in d = 4 dimensions, where the

Yang-Mills theory is classically conformal. The tadpole graphs yield

1

2
+

1

2
= κ2δab(q2ηµν − qµqν)×

× 1

8

(

−d2 + 8d − 4 − (d − 4)(d − 6)

(D − 2)

)

∑

~n

∫

ddk

(2π)d
1

k2 − m2
~n

. (3.4)

Again only the 1/(D − 2) term vanishes in d=4 dimensions. Finally their sum

κ2 = κ2δab(q2ηµν − qµqν)×

× d − 4

8d

(

−d2 + 4d − 8 − (d − 2)(d − 8)

(D − 2)

)

∑

~n

∫

ddk

(2π)d
1

k2 − m2
~n

(3.5)

manifests an overall factor of (d−4) generalizing our zero result in [10], where only the pure

4-dimensional case was considered. It is noteworthy that the vanishing of the gravitational

correction in the d=4 case cannot be explained by the tracelessness of the energy momen-

tum tensor of gauge theories. As mentioned above, this argument holds only for the term

∼ 1/(D − 2) in (3.5).

The resulting divergence can be cancelled by the counter-term:

= −iδab(q2ηµν − qµqν)δ2, (3.6)

with δ2 = Z2 − 1, Z2 being the gluon wave function renormalization constant, and

δ2

∣

∣

∣

O(κ2)
= κ2 d − 4

8(D − 2)

(

(d − 3)(d − 2) +
δ

d
(d2 − 4d + 8)

)

i
∑

~n

∫

ddk

(2π)d
1

k2 − m2
~n

. (3.7)

To determine the running of the coupling constant also the leading gravity induced

divergencies of the amputated three-gluon function from figure 2 are needed. We find that

these are cancelled by the three-gluon counter-term

= gfabc
[

ηµν(p − q)ρ

+ ηνρ(q − k)µ

+ ηρµ(k − p)ν
]

δ3g
1

(3.8)
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Figure 2: Gravitational one-loop diagrams for the three-gluon function.

with the value

δ3g
1

∣

∣

∣

O(κ2)
= κ2 d − 4

8(D − 2)

(

(d − 3)(d − 2) +
δ

d
(d2 − 4d + 8)

)

i
∑

~n

∫

ddk

(2π)d
1

k2 − m2
~n

. (3.9)

Note that this is identical to the gravitational contribution to the value of the two-point

counter-term constant δ2 of (3.7). The purely gauge part of the one-loop divergencies are

of course left unmodified.

The equality of the vertex and propagator correction is a direct consequence of gauge

invariance.6 Due to the universality of the gauge coupling g, its renormalization constants

obtained from the three-gluon and gluon-ghost vertex must be the same, i.e.

Z1

Z
3/2
2

=
Z̃1

Z
1/2
2 Z̃2

, (3.10)

where Z1(Z̃1) denote the vertex renormalization constants for gluon (ghost) couplings.

Since the gluon ghosts are introduced after the expansion of the metric and thus do not

couple to gravitons, we have with Z̃1 = 1 + δ̃1 and Z̃2 = 1 + δ̃2 that

δ̃1

∣

∣

O(κ2)
= δ̃2

∣

∣

O(κ2)
= 0

and so by virtue of (3.10) at one-loop level

δ3g
1

∣

∣

∣

O(κ2)
= δ2

∣

∣

∣

O(κ2)
.

In order to extract the leading divergence from the loop-integrals one may replace

the sum over discrete toroidal KK-modes ~n = (n1, n2, . . . , nδ) by an integration over the

mass density

i
∑

~n

∫

ddk

(2π)d
1

k2 − m2
~n

= Rδ

∫

dδm

∫

ddk

(2π)d
i

k2 − m2
~n

= Rδ

∫

dDK

(2π)d
i

K2

=
2πD/2

(2π)dΓ(D
2 )

Rδ

D − 2

(

ΛD−2 − µD−2
)

,

6Here we thank Theodor Schuster for valuable comments.
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where K = (k,m~n) is the D-dimensional momentum vector. Above we have also introduced

the D dimensional UV-cut-off Λ and a low energy reference scale µ. Taking further into

account that

Vδκ
2 = κ2

(D) =
32π

MD−2
(D)

, (3.11)

we obtain

δ3g
1

∣

∣

∣

O(κ2)
= δ2

∣

∣

∣

O(κ2)
= ∆

ΛD−2 − µD−2

MD−2
(D)

,

∆ =
2

(4π)D/2−1Γ(D
2 )

d − 4

(D − 2)2

(

(d − 3)(d − 2) +
δ

d
(d2 − 4d + 8)

)

.

(3.12)

The resulting gravitational contribution to the Yang-Mills coupling beta-function

then reads

βg = g
∂

∂ log µ

(

3

2
δ2 − δ3g

1

)

⇒ βg

∣

∣

∣

O(κ2)
= − g

(4π)D/2−1Γ(D
2 )

d − 4

D − 2

(

(d − 3)(d − 2) +
δ

d
(d2 − 4d + 8)

)

µD−2

MD−2
(D)

(3.13)

Irrespective of the presence of higher dimensional gravity, for d = 4 (3-branes) there

are no gravitational corrections to the Yang-Mills β-function at one-loop order.7 It is

crucial that the vanishing of the leading gravitational divergence and thus the absence of a

gravitational induced running of the coupling constant is a unique feature of 4-dimensional

gauge theories, independent of the number of extra dimensions.

We claim that this is a gauge condition independent result based on the arguments

of [16] for the dimensionless gauge coupling in d=4 dimensions.

3.2 Non-abelian higher-dimensional counterterms

In [10] we studied in addition to the running of the Yang-Mills coupling constant the gener-

ation of gauge invariant terms whose mass dimension is six in d=4 dimensions. Generally,

the one-loop gravitational UV-divergencies renormalize also gauge invariant terms of higher

mass dimension which consequently should be included in the effective Lagrangian of the

Yang-Mills sector

Leff. YM = −1

2
tr [FµνFµν ] + a tr [DµFµρDνF νρ] + b tr

[

Fα
βF β

γF γ
α

]

,

where a, b are new effective coupling constants. We found that in four dimensions only

the coefficient a is affected. This is an interesting result because it is the non-abelian

generalization of the Lee-Wick term [13] recently considered in [14] as part of an extented

standard model.8

7Note that for d 6= 4 this result is specific for the de Donder gauge (α = 1). Due to its non-zero mass

dimension, the coupling constant and its renormalization might depend on the chosen gauge in the gravity

sector, see e.g. [16, 17].
8Contrary to the remarks in [10, 12], this term cannot be simply rempoved by a field redefinition, since

such a non-linear field redefinition would introduce new ghost fields via the Jacobian in the path integral.
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qq

k − xq

k + (1 − x)q

Figure 3: A general parameterization of the loop-momenta for a bubble graph.

The generalisation of our previous result to a (d+δ)-dimensional braneworld hold a

major difficulty. The corresponding gravitational contributions are no longer logarithmic

but powerlike divergent in D 6= 4 and non-leading powerlike divergencies depend on the

chosen parametrization of the loop momentum if cut-off regularization is applied. Figure 3

shows a general parameterization for a self-energy diagram. Here k is loop-momentum and

x ∈ R is the fraction of the outer momentum q flowing on the graviton line. As explict

calculations show the results for the sub-leading, non-logarithmical divergent contributions

depend on x. More complex graphs, like triangles etc., have to be parametrized by more

such free parameters, one for each independent external momentum.

This obstacle can be partially overcome by demanding gauge invariant results which

fixes some of the degrees of freedom. The remaining ambiguity can be eliminated by requir-

ing a universally applicable parameterization, i.e. all bubbles, triangles etc. parameterized

in identical manner. The consideration of similar problems involving fermions and charged

scalars in [21] shows that gauge invariant counter-terms are achieved only by parameteri-

zations, where the graviton propagator does not carry any part of the external momenta,

i.e. the graviton momentum is exactly the loop-momentum which one is integrated over.

Using the above notation this means e.g. x = 0 for the bubble graphs.

Applying this prescription, our calculations led to the following expressions of the

corresponding counterterms

Lc. t. = δa tr [DµFµρDνF νρ] + δb tr
[

Fα
βF β

γF γ
α

]

with

δa = κ2 (d − 2)2

2(d + 2)(D − 2)

(

3 − d +
δ

d

(

4 − 3

2
d

))

i
∑

~n

∫

ddk

(2π)d
1

k2(k2 − m2
~n)

, (3.14)

δb = gκ2 (d − 4)

d(d + 2)(D − 2)

(

8 − 8d − d2 − δ(16 + d)
)

i
∑

~n

∫

ddk

(2π)d
1

k2(k2 − m2
~n)

(3.15)

or equivalently, by calculating again the sum and integrals and introducing new dimension-

less tilded quantities a = ã/M2
(D) and b = b̃ g/M2

(D) and the coresponding counter-terms
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δa = δã/M
2
(D) and δb = δb̃g/M2

(D),

δã =
8

(4π)D/2−1Γ(D
2 )

(d − 2)

(d + 2)(D − 4)

(

3 − d +
δ

d

(

4 − 3

2
d

))

ΛD−4 − µD−4

MD−4
(D)

, (3.16)

δb̃ =
16

(4π)D/2−1Γ(D
2 )

(d − 4)
(

8 − 8d − d2 − δ(16 + d)
)

d(d + 2)(d − 2)(D − 4)

ΛD−4 − µD−4

MD−4
(D)

, (3.17)

Note that the counterterm δb vanishes for d = 4 in agreement with our previous re-

sult [10]. Thus, there is no need to consider a term ∼ tr FFF in usual four space-time

dimensions. This is a welcomed result, since such a term would lead to a violation of

unitarity [14].

Most interestingly, due to higher-dimensional gravity, for d = 4 the nonvanishing coun-

terterm δa depends now on the fundamental gravitational constant κ(D) which is assumed

to be much larger than κ.

4. Summary and conclusions

In this work we have applied the techniques of effective field theory in the spirit of [22] for

investigating the higher dimensional Einstein-Yang-Mills system in a D = d+ δ large extra

dimensional brane world. In this scenario the gauge bosons live on a fluctuating (d−1)-

brane and gravitons move freely in the compactified δ extra dimensions. Following standard

methods [16, 18, 19] by expanding the D-dimensional metric around a flat space-time

background in the graviton field hMN , then performing the Kaluza-Klein (KK) reduction

and adding the gauge boson part on the brane, we obtained the neccessary Feynman

rules for propagators and interaction vertices of gauge bosons, KK-gravitons and branons.

On this basis we then performed one-loop calculations including towers of excited KK-

gravitons in order to determine the possible gravity-induced power-law corrections to the

Yang-Mills β-function and the generation of higher derivative operators. As we found,

all tadpole contributions to the gauge boson propagator, which are induced by branon-

KK-graviton mixing, vanish in the considered lowest order expansion in the brane tension.

Again, as in our earlier paper [10], for the physical 3-brane (d=4) the possible power-law

behaviour of the running gauge coupling cancels. However, as an important new effect of

the incorporation of the ADD-scenario of large size (compact) extra dimensions into the

Einstein-Yang-Mills system, we now obtain a significant increase of the gravity-induced

structure coefficient a of the non-abelian counterterm a ∼ tr(DF )2. Clearly, this is a

direct consequence of the lowering of the D-dimensional Planck scale M(D). Interestingly,

the gravitationally induced term is of the non-abelian Lee-Wick form, which has been

discussed recently as a mechanism to stabilize the Higgs mass [14]. Irrespective of this, the

lowered mass scale provides a window for possible to observation of the associated massive

Lee-Wick vector-bosons at TeV energies — iff large extra dimensions exist.

The methods of effective field theory used in this paper can only be applied for com-

puting contributions to physical processes at low-energy scales of external momenta. When

applying effective field theory to large virtual momenta in the considered gravitational one-

loop calculations, it cannot really be controlled. Thus, one has to introduce an explicit
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UV-cutoff Λ which has to be treated as a phenomenological parameter [16]. In this sense

the main goal of the present work was indeed a more conceptual one by studying the ef-

fect of large extra dimensions on new gravity-induced structures like a possible power-law

running of the gauge boson coupling and a qualitative estimate of the structure constant

in the induced counterterms. The techniques developed in this paper may turn out to be

useful in future investigations.
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A. Validity of the energy expansion

In our investigation of possible one-loop contributions from gravitons and branons we

focused only on gravity effects ∼ κ2 and not on effects of the brane tension τ , i.e. neglecting

both terms O(τ) and O(τ−1). In this section we show that an energy hierarchy allowing

this ansatz exists, due to limited number of combinations of energy scales appearing in the

expansion. The various energy scales of the effective field theory are:

κ(D) ≃ M
2−D

2

(D) , τ = Md
τ , E , MV = (2πR)−1.

For the effective theory of gravity to be valid, we need the following requirements:

1. Of course, the expansion parameter itself must be small. Keeping the number of

incoming and outgoing particles, fixed the expansion parameter is

κ(D)E
D−2

2 =

(

E

M(D)

)
D−2

2

≪ 1 =⇒ E

M(D)

≪ 1 . (A.1)

2. In our consideration we neglected higher branon corrections, e.g. , which are

at least O(τ−1). Thus we need

Ed

τ
=

(

E

Mτ

)d

≪ 1 =⇒ E

Mτ
≪ 1 . (A.2)

3. As a consequence of (2.11) the effective theory includes tree-level mixing between

Kaluza-Klein graviton states, direct and indirect via branons , as
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well as tadpoles . All of these effects are of order O(κ2
(D)τ). Neglecting their

effect requires

κ2
(D)τ =

Md
τ

MD−2
(D)

= M2
(D)

Md
τ

MD
(D)

≪ E2−D+d = E2−δ . (A.3)

To find a consistent energy hierarchy in which the mixing can be ignored, we have to

consider the following cases:

(a) δ > 2, assuming Mτ ≫ M(D) (A.3) is equvialent to:

Eδ−2 ≪
MD−2

(D)

Md
τ

M(D)≪Mτ

≪ MD−2−d
τ = M δ−2

τ ,

i.e. Mτ ≫ E, in agreement with the requirement (A.3).

The assumption Mτ ≫ M(D) is feasible, since only the brane density Md
τ ρ−δ,

with ρ being the thickness, is bounded by the D dimensional Planck scale MD
(D)

(b) In the case δ = 2 (A.3) simplifies to

Mτ ≪ M(D) .

(c) Finally, if δ = 1 (A.3) is equvialent to

Md
τ ≪ EMd−1

(D) ≪ M(D)

but it should still be E1Md−1
(D) ≫ Ed, so that (A.2) can be satisfied.

Thus we find the energy hierarchy:

for δ > 2 E ≪ M(D) ≪ Mτ , (A.4)

for δ = 2 E ≪ Mτ ≪ M(D) (A.5)

and for δ = 1 E ≪ Mτ ≪ E1/dM
(d−1)/d
(D) ≪ M(D) (A.6)

in which our pertubative considerations above are meaningful.
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